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Abstract 

 
This study presents a time-series analysis of the demand for peanut butter in the wake of the 
product recall involving Peter Pan and Great Value brands. A 2-lag directed acyclic 
graphs/Bernanke vector error correction model was estimated using weekly time-series data. The 
outbreak variable was negatively related to the demand for peanut butter, supporting the 
hypothesis that foodborne illness reduces consumer demand for a food product category. Hence, 
time-series models should be complementary to structural/econometric models in examining the 
impacts of food safety incidents as a check on the robustness of the results. 
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Introduction 
 
In 2006–2007, the U.S. Centers for Disease Control and Prevention (CDC) and state departments 
of health investigated a multistate outbreak of salmonellosis. Subsequent investigation concluded 
that the foodborne illnesses had been caused by the consumption of two brands of peanut butter: 
Peter Pan and Great Value (a Wal-Mart store brand), both manufactured by ConAgra Foods, Inc., 
at its Sylvester, Georgia, processing plant (CDC, 2007). As a result, ConAgra ceased the 
production of peanut butter at this plant, destroyed all affected products in their possession, and 
voluntarily issued a nationwide recall of Peter Pan and Great Value peanut butter products 
produced since May 2006 through a news release distributed on February 14, 2007 (CDC, 2007). 
Following the recall, ConAgra not only redesigned this processing plant but also initiated an 
unprecedented marketing campaign concerning their Peter Pan brand (Bakhtavoryan, Capps, and 
Salin, 2014b). 
 
A large body of literature has been dedicated to providing empirical evidence for the impacts of 
food safety issues on demand for various products (Swartz and Strand, 1981; Smith, van 
Ravenswaay, and Thompson, 1988; van Ravenswaay and Hoehn, 1991; Burton and Young, 
1996; Verbeke and Ward, 2001; Marsh, Schroeder, and Mintert, 2004; Piggott and Marsh, 2004; 
Pritchett et al., 2007). All of these studies found a statistically significant negative relationship 
between the food safety incident and demand for the product in question. 
 
Using Nielsen Homescan panels for household purchases from 2006 through 2008, 
Bakhtavoryan, Capps, and Salin (2012, 2014a,b,c) analyzed the influence of the Peter Pan and 
Great Value recall on various aspects of demand for peanut butter. In particular, these 
investigations used structural/econometric models to analyze spillover effects, competition 
among brands, and structural change in demand for peanut butter brands in the wake of the Peter 
Pan and Great Value recall. Both a single-equation model and a demand systems model were 
employed. 
 
The objective of this study is to furnish findings on the impact of the Peter Pan and Great Value 
product recall on the demand for the peanut butter category using a time-series approach, in 
contrast to the structural/econometric approach previously employed by Bakhtavoryan, Capps, 
and Salin (2014b). In this way, a check of the robustness of the results between the two 
alternative approaches can be made, contributing to the extant literature dealing with examining 
impacts of food safety incidents. Specifically, our aim is to compare empirical results from the 
structural/econometric model employed by Bakhtavoryan, Capps, and Salin (2014b) to those 
generated by the use of a vector error correction (VEC) model. The set of variables considered 
and the data used in this comparison are the same as in the previous study. 
 
Another contribution of this study is that, to the best of our knowledge, most studies dealing with 
food safety incidents have employed structural models as opposed to time-series models. This 
work then adds to the extant literature in this capacity. Further, except for the 
structural/econometric models employed by Bakhtavoryan, Capps, and Salin (2014a,b), previous 
research on food safety issues has not used the number of confirmed cases of Salmonella 
reported by the CDC as a measure of the outbreak. Instead, previous research has commonly 
used various types of media variables to account for the impacts of food safety incidents. Finally, 
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this study contributes by utilizing a modified approach in its application of directed acyclic 
graphs while dealing with casual relationships among variables when addressing the issue of 
contemporaneous correlations for generating representative impulse-response functions and 
forecast error variance decompositions. 
 
Literature Review 
 
Prior studies have paid much attention to the problem of consumer response to food safety issues 
by employing various econometric approaches, including single-equation structural models and 
demand system models. In particular, Swartz and Strand (1981) investigated the impact of 
information concerning oyster contamination due to kepone (an insecticide) on the demand for 
shucked oysters in Baltimore, Maryland. They estimated a single-equation structural model with 
second-order and 4-lag polynomial distributed lag (PDL) structure, using biweekly data from 
1973–1976. The variable reflecting the negative information was constructed based on articles 
from the four major Baltimore and Washington newspapers. The estimation results showed that 
the lags of the media variable were statistically significant, negatively impacting the 
consumption of oysters. 
 
In their study, Smith, van Ravenswaay, and Thompson (1988) analyzed the response of fluid 
milk sales to negative newspaper coverage related to the heptachlor (an insecticide) 
contamination of fresh fluid milk in Oahu, Hawaii, by applying a single-equation structural 
model with second-degree PDL specification and 3 lags. Their study used monthly time-series 
data from January 1977 to June 1983. A negative media variable was developed using newspaper 
articles regarding the food contamination incident from two major Honolulu newspapers during 
the period that contained negative information on milk quality, the level of government 
protection, and the integrity of milk processors in handling the incident problem. The estimation 
results suggested a statistically significant negative relationship between the current and lagged 
negative media variables and fluid milk sales. 
 
Van Ravenswaay and Hoehn (1991) studied the influence of Alar (a carcinogenic chemical 
sprayed on fruit) on the demand for apples by estimating a single-equation PDL model with 3 
lags and employing monthly data from January 1980 to July 1989. The risk information variable 
concerning Alar was constructed based on the monthly number of articles in The New York 
Times. The empirical findings of the study indicated that the current and the third lag of the risk 
information variable were significant and negatively impacted the demand for apples. 
 
Burton and Young (1996) investigated the effects of bovine spongiform encephalopathy (BSE) 
on the demand for beef and other meat products in Great Britain by applying a dynamic Almost 
Ideal Demand System (AIDS) model and using quarterly data from January 1961 to March 1993. 
They developed a variable capturing consumer awareness of BSE based on the number of 
published newspaper articles that contained information on BSE. Their empirical results showed 
that consumer awareness of BSE resulted in a loss in market shares of beef producers both in the 
short run and in the long run. 
 
Verbeke and Ward (2001) analyzed consumer response to the negative public media coverage 
regarding food safety issues associated with fresh meat in Belgium. Their study estimated a 
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linear approximation of the AIDS model for beef and veal, pork and meat mixtures, and poultry, 
employing panel data on monthly observations from January 1995 to December 1998. The mass 
media index, which was anticipated to capture consumer awareness of meat-related health issues, 
was developed by subtracting the number of positive TV reports from the number of negative 
TV reports associated with the effects of meat consumption on human health. The empirical 
findings showed that the impact of adverse publicity, primarily concerning BSE, was statistically 
significant and had a negative influence on the consumption of beef and veal and a positive 
influence on the consumption of pork and meat mixtures. 
 
Marsh, Schroeder, and Mintert (2004) studied the effects of meat product recall events on the 
demand for beef, pork, poultry, and other products in the United States by estimating the 
absolute price version of the Rotterdam model using quarterly data on beef, pork, chicken, and 
turkey from 1982–1998. Two measures of meat product recalls were constructed using Food 
Safety Inspection Service (FSIS) reports and media reports from the popular press. The empirical 
results revealed that, unlike newspaper reports, FSIS reports on recall events negatively 
influenced the demand for beef and pork and positively influenced the demand for poultry and 
other products. 
 
Piggott and Marsh (2004) estimated a Generalized Almost Ideal Demand System model to 
evaluate the effects of public information concerning food safety issues related to beef, pork, and 
poultry reported in the media on meat demand. The study employed quarterly meat data from the 
first quarter of 1982 through the third quarter of 1999. They developed food safety indices for 
each meat type by aggregating the number of newspaper articles regarding food safety issues. 
The estimation results established a statistically significant relationship between consumer 
demand and contemporaneous media coverage of health hazards. 
 
Pritchett et al. (2007) evaluated consumer demand for meat cuts of beef, pork, and chicken in 
light of the announcements associated with BSE in Canada and the United States by estimating 
the AIDS model and using a dataset derived from monthly retail scanner data for 191 meat 
products sold in U.S. retail grocery stores from January 2001 through February 2005. They 
constructed an information variable accounting for the influence of media coverage based on the 
reported articles. The estimation results indicated that the BSE events negatively affected the 
demand for ground beef and chuck roasts and positively affected the demand for center-cut pork 
chops. 
 
The 2007 Peter Pan and Great Value peanut butter recall has been analyzed by prior studies 
using single-equation structural model and demand systems. In particular, Bakhtavoryan, Capps, 
and Salin (2012) used the Barten synthetic model to estimate the pre- and post-recall demand 
elasticities for a statistical comparison using weekly observations from Nielsen Homescan panel 
data on household purchases of major peanut butter brands from January 2006 through 
December 2008. The estimation results revealed that demand elasticities statistically increased 
across the two recall periods, thus contributing to a structural change in the demand for peanut 
butter brands. 
 
Using the same dataset, Bakhtavoryan, Capps and Salin (2014a) estimated the Barten synthetic 
model with a PDL specification applied to the variable measuring the impact of the recall to 
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ascertain possible spillover effects among major peanut butter brands in the wake of the Peter 
Pan and Great Value peanut butter recall. They constructed the recall variable based on the 
number of confirmed cases of Salmonella due to the consumption of contaminated peanut butter 
reported by the CDC. The empirical findings revealed that the demand for Peter Pan was 
negatively impacted by the recall, while the demand for Jif enjoyed positive spillover effects as a 
result of the recall. 
 
In another study by Bakhtavoryan, Capps, and Salin (2014b), a single-equation structural 
demand model was estimated to study the influence of the 2007 Peter Pan and Great Value 
peanut butter recall on the demand for peanut butter at the product-category level. A second-
degree and a 3-lag PDL structure were imposed on the variable capturing the recall effects and 
constructed using the number of confirmed cases of Salmonella from the consumption of 
contaminated peanut butter. Contrary to expectations, the impact of the recall variable on the 
demand for peanut butter was found to be positive, suggesting that the recall had demand-
enhancing effects for peanut butter at the product-category level. This unexpected finding was 
explained by households’ restocking behavior, in which jars of tainted peanut butter were 
substituted with other brands, leading to an overall increase in the consumption of peanut butter. 
 
Finally, Bakhtavoryan, Capps, and Salin (2014c) estimated a multinomial logit models to 
identify household socioeconomic factors that influenced three consumption patterns associated 
with the Peter Pan peanut butter. The three consumption patterns were buying Peter Pan in the 
pre-recall period only, buying Peter Pan in the post-recall period only, and buying Peter Pan in 
both the pre- and post-recall periods. The estimation results revealed that characteristics such as 
employment status of the household head, region of residence, race, ethnicity, age and presence 
of children in the household were statistically significant drivers associated with the actions 
taken by households in light of the Peter Pan recall. In the same study, findings from the 
Heckman sample selection model indicated that the change in price, region of residence, race, 
age and presence of children in the household, and household size were key drivers impacting 
the change in quantity of Peter Pan purchased across the pre- and the post-recall periods. 
 
The present analysis is similar to prior studies reviewed in that it also attempts to evaluate the 
impact of a food safety issue on the demand for a product. However, the distinct feature of the 
present analysis is reflected in its use of a time-series approach complemented with the analysis 
of the directed acyclic graphs and its inclusion of the number of confirmed cases of Salmonella 
reported by the CDC as a measure of the outbreak. 
 
Methodology 
 
In a single-equation model, constructed based on economic theory, it is implicitly assumed that 
there is a unidirectional cause-and-effect relationship between the dependent variable and the set 
of independent or explanatory variables, with the causal flow implying that the set of 
independent variables is the cause and the dependent variable is the effect. But sometimes there 
are cases when a unidirectional relationship is not viable. An advantage of estimating the 
equations as a system rather than individually is the resulting improvement in efficiency, which 
is obtained because error terms are typically correlated among equations. In the present study, as 
an initial step, a system of equations in the form of the vector autoregression (VAR) model was 
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estimated, in contrast to the single-equation structural model in Bakhtavoryan, Capps, and Salin 
(2014b). 
 
Sims (1980) developed and introduced the VAR model, which—along with its variants—has 
become popular in applied time-series analysis (Brandt and Bessler, 1984; Bessler, 1984a; 
Awokuse and Bessler, 2003; Capps, Bessler, and Williams, 2016). One reason for the acceptance 
of the VAR approach is that the identification conditions of structural-equation modeling are 
relaxed. In a single equation or system of structural equations, the analyst must specify variables 
as exogenous or endogenous. To estimate the parameters of the system, either exact 
identification or over-identification conditions have to be fulfilled. The identification conditions 
are often fulfilled by specifying particular exogenous variables to appear in some equations, 
while they are omitted from other equations (Gujarati, 2004). This approach was not deemed 
appropriate by Sims, who maintained that there should not be any postulated distinction between 
endogenous and exogenous variables and that all variables should be treated equally (Sims, 
1980).  
 
Subsequent extensions of time-series methods took into account that, in some situations, 
variables share common stochastic trends; when they do, they are said to be cointegrated 
(Granger, 1981; Engle and Granger, 1987). Once a system of variables is determined to have 
cointegrating relationships, Lütkepohl and Kratzig (2004) suggested considering a specific 
parameterization supporting the analysis of the cointegration structure, leading to VEC models. 
The VEC model is sensitive to autocorrelation of the residuals, which may arise during the 
optimal lag selection procedure (Phoong, Ismail, and Sek, 2014). The residual autocorrelation 
problem applies to VAR models too. However, the VEC model has the additional imposed 
restriction that the variances and covariances of the error-correction terms are assumed to be 
constant (Phoong, Ismail, and Sek, 2014). Just as in a structural single-equation model, VAR 
models are developed by including variables that are suggested by the economic theory.  
 
In our model, the variables included in the VAR (and subsequently the VEC model) are based on 
economic theory, as are the variables incorporated in the corresponding structural single-
equation model. In particular, consumer theory hypothesizes that quantity demanded of a product 
is influenced by its own price, price of a substitute or a complement good, and consumer income. 
Hence, in the final VEC model, the quantity demanded of peanut butter was hypothesized to be 
affected by the price of peanut butter, the price of jelly as a complement good, and consumer 
income. Coupons are price reductions and, as such, impact quantity demanded of a product. 
Hence, in the final VEC model, a variable associated with coupon values for peanut butter was 
incorporated. Per theory, negative information is expected to decrease quantity demanded of a 
product. In our case, the outbreak variable was incorporated in the VEC model to capture the 
effects associated with the recall on the quantity demanded of peanut butter. A dummy variable 
was included in the VEC model to capture the possible structural change in the demand for 
peanut butter in the wake of the recall. While the theory does not say anything about the 
seasonality in the consumption of a product, quarterly dummy variables were incorporated in the 
VEC model to account for potential seasonality in the demand for peanut butter. 
 
The initial step in accomplishing the objective of this study is to specify a VAR model: 
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(1) 𝐗𝐭 = 𝛃+ 𝐀𝐢𝑋!!! + 𝜺𝒕!
!!! , 

 
where Xt is a vector of series corresponding to quantity of peanut butter purchased, real price of 
peanut butter, real price of jelly, coupon redemption for peanut butter, real income, and the 
number of confirmed cases of Salmonella reported by the CDC (i.e., the outbreak variable). 
Additionally, β is a drift vector, Ai is a coefficient matrix, εt is a vector of stochastic white noise 
error terms, i represents lags, and k is the maximum length of lag. The model was augmented by 
including seasonal dummies and a dummy variable to control for a structural shift in the demand 
for peanut butter. In this analysis, a natural logarithm transformation was applied to all the 
variables except for the number of confirmed cases of Salmonella reported by the CDC. For the 
outbreak variable, a square root transformation was applied to capture diminishing marginal 
returns associated with the possible nonlinear relationship between the quantity of peanut butter 
purchased and the outbreak variable (Capps, Bessler, and Williams, 2016). 
 
Per the law of demand, a negative relationship was anticipated between the quantity purchased of 
peanut butter and own price (Rimal, Fletcher, and Deodhar, 2001). According to economic 
theory, a negative relationship was anticipated between the quantity purchased of peanut butter 
and the price of jelly because of the complementary relationship associated with these products 
(He et al., 2004; Smith, Rossi, and Allenby, 2016; Caine-Bish and Scheule, 2007). A positive 
relationship was expected between coupon values and the quantity purchased of peanut butter. 
Peanut butter was hypothesized to be a normal good (Rimal, Fletcher, and Deodhar, 2001). As 
such, a positive relationship was expected between the quantity purchased of peanut butter and 
income. Finally, in keeping with economic theory and empirical studies of food safety incidents 
(Duan, 2014), a negative relationship between the quantity purchased of peanut butter and the 
outbreak variable was expected. 
 
Before estimating the model, a few practical issues need to be addressed. Augmented Dickey–
Fuller (ADF) tests have to be carried out to test for stationarity in the series. If the respective 
variables are not stationary, then it is necessary to construct a first or second difference to render 
them stationary. Also, the optimal lag length must be determined based on statistical criteria, 
such as the Akaike Information Criterion (AIC) or the Schwarz Information Criterion (SIC). 
Finally, Johansen’s cointegrating rank test must be carried out to identify possible cointegrating 
equations (Johansen, 1988; Juselius, 2006). If there is at least one cointegrating equation, a VEC 
model is appropriate. A VEC model in first differences with order of k − 1 can be written as  
 

(2) 𝛥𝑋! = 𝛂+ Г𝒊𝛥𝑋!!! + 𝚷𝑋!!! + 𝑢!!
!!! , 

 
where α is a drift vector, Гi is a short-run coefficient matrix, Π is a long-run coefficient matrix, 
ΠXt−1 is the error-correction term, and ut is the error term. 
 
Directed Acyclic Graphs 
 
In general, VAR and VEC models say little about contemporaneous time correlation among 
variables. However, ignoring causal orderings among the respective variables in the VEC model 
in contemporaneous time may not produce representative impulse-response simulations and 
forecast error variance (FEV) decompositions (Bessler, 1984b; Sims, 1980). 
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The econometric literature dealing with the use of VAR and VEC models has traditionally 
accounted for contemporaneous correlations in three ways. The first is the use of Choleski 
factorization, in which contemporaneous correlations are established by imposing theory-based 
and recursive causal ordering on the variance/covariance matrix of the error terms (Bessler, 
1984b; Sims, 1980; Bessler and Akleman, 1998). The problem with this approach is that 
situations usually are not recursive and, in general, results from impulse responses and FEV 
decompositions vary noticeably with the ordering chosen by Choleski factorization. The second 
approach rests on the use of the structural VAR method (Bernanke, 1986), in which prior notions 
of evidentially based and/or theoretically grounded, contemporaneously causal orderings may be 
imposed on the variables that make up the VAR (Bessler and Akleman, 1998). The problem here 
is that the true contemporaneous orderings that analysts claim to know may not be correct. The 
third approach developed by Pesaran and Shin (1998), a generalized impulse-response analysis 
for VAR models (and for cointegration or VEC models as well), avoids orthogonalization of 
shocks and therefore generates order-invariant results (Babula, Bessler, and Payne, 2004). The 
use of the third approach requires caution (Doan, 2002) because of difficulty in interpreting 
impulses from highly correlated shocks within a nonorthogonalized setting. 
 
In this study, the Bessler and Akleman (1998) procedure was used to optimally choose a set of 
causal relations among six variables and then impose the evidentially supported causal relations 
on a Bernanke-type structural VAR. In following this procedure, an attempt is made to avoid 
choosing arbitrarily among competing but otherwise theoretically consistent sets of 
contemporaneous orderings inherent in Choleski-ordered or Bernanke structural VARs. This is 
accomplished with the help of directed acyclic graphs and the PC algorithm.1 Pioneers in 
applying a graph-theoretical approach to the problem of determining the order of structural VAR 
were Swanson and Granger (1997), Bessler and Loper (2001), Bessler and Lee (2002), Demiralp 
and Hoover (2003), and Hoover, Demiralp, and Perez (2009). To address the issues associated 
with the VAR and VEC models in assessing the contemporaneous time correlation among 
variables, the present analysis is complemented with directed acyclic graphs and the PC 
algorithm, explained in the next section. 
 
Directed Graphs and the PC Algorithm 
 
A graph is a data structure, 𝒢, consisting of a set of nodes and a set of edges. A pair of nodes 
X!,X! can be connected by a directed edge, X! → X!, or an undirected edge, X! − X!. Thus, the set 
of edges, ξ, is a set of pairs in which each pair is one of X! → X!,X! ← X!, or X! − X!. Whenever 
X! → X!ϵ ξ, we call X! child of X! and X! parent of X!. We say that X!,⋯X! form a path in graph 
𝒢 if, for every 𝑖 = 1,… , 𝑘 − 1, we have that either X! → X!!!, or X! − X!. A path is directed, if, 
for at least one 𝑖, we have X! → X!!!. X is an ancestor of Y in 𝒢 and Y is a descendant of X if 
there exists a directed path X!⋯X! with X! = X and X! = Y. A cycle in 𝒢 is a directed path 
X!…X!, where X! = X!. A graph is acyclic if it contains no cycles. We call these graphs 
directed acyclic graphs (DAGs). DAGs are the fundamental graphical representation that 
underlies Bayesian Networks. A Bayesian Network structure 𝒢 is a DAG whose nodes represent 
random variables X!…X! . Denote Pa!!

𝒢  the parents of X!  in 𝒢 , and NonDescendants!!  the 

                                                
1 PC stands for the initials of its inventors: Peter Spirtes and Clark Glymour. 
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variables in the graph that are not descendants of X!. Then, 𝒢 encodes the following set of 
conditional independence assumptions, called the local independencies: 
 

(3) (X! ⊥ NonDescendants!!|Pa!!
𝒢 ) 

 
or 
 

(4) P(X!,… ,X!) = P!
!!! (X!||Pa!!

𝒢 ). 
 
Basically, equation (3) says that each node Xi is conditionally independent of its nondescendant 
given its parents. That is, the other information is irrelevant as long as we can identify the 
parents of the node.  
 
Equation (4) is a direct consequence of an assumption about equation (3). In other words, since 
the joint distribution can always be written as a product of conditional probabilities, 
P X!,… ,X! = P X! 𝑃 𝑋! 𝑋! … .𝑃(𝑋!|𝑋!…𝑋!!!), then using the independence assumption 
on equation (3) and that the graph is acyclic (i.e., there exists at least one node which does not 
have parents), equation (4) holds true. Equations (3) and (4) are the fundamental ideas behind 
constructing the DAGs and d-separation (Pearl 1986). Geiger, Verma, and Pearl (1990) show the 
soundness and completeness of d-separation. By soundness they mean that any independence 
reported by d-separation is satisfied by the underlying distribution. The completeness of d-
separation requires the notion of faithfulness. A distribution is faithful to 𝒢 if any independence 
in distribution is reflected in the d-separation properties of the graph. It can be shown that 
faithfulness holds for almost all distributions that satisfy equation (4) over 𝒢. In other words, for 
almost all possible choices of conditional probability distributions for the variables, d-separation 
precisely characterizes the independencies of the underlying distribution (Koller and Friedman, 
2010).  
 
Having these tools available, Spirtes, Glymour, and Scheines (2000) incorporated the notion of 
d-separation into an algorithm (PC algorithm) for building DAGs. The PC algorithm is an 
ordered set of commands that begins with a set of relationships among variables (in our case 
innovations [i.e., error terms] from each VAR equation) and proceeds stepwise to remove edges 
between variables so as to direct causal flow in contemporaneous time (Spirtes, Glymour, and 
Scheines, 2000; Bessler and Akleman, 1998). The goal is to impose a directed edge among sets 
of variables {X!,X!,X!} in a vertex set (variable set) 𝒳: X! → X! → X!,  X! ← X! ← X!,  X! →
X! ← X!. 
 
The algorithm begins with a complete, undirected graph that places an undirected edge between 
every variable in the system (every variable in graph 𝒢 vertex set 𝒳). Edges between variables 
are removed sequentially on the basis of zero correlations or zero partial (conditional) 
correlations. These conditioning variables on removed edges between variables comprise Bessler 
and Akleman’s (1998) “sepset” of the variables whose edge has been removed. 
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Data 
 
This study employs weekly time-series data from the Nielsen Homescan Panel on quantities 
purchased, prices, and coupons from July 26, 2006, through December 30, 2018, for a total of 
127 weekly observations.2 In addition, the dataset included a variable measuring income and a 
variable measuring the impact of the recall. Table 1 reports descriptive statistics on the variables 
used in the analysis. 
 
Table 1. Descriptive Statistics (N = 127) 
Variable Description Units Mean Std. Dev. 
Quantity_PB Quantity of peanut butter oz 33.54 1.15 
Price_PB Real unit value of peanut butter cents/oz 5.01 0.25 
Price_Jelly Real unit value of jelly cents/oz 3.21 0.24 
Coupon_PB Real coupon of peanut butter cents 5.42 2.91 
Income Weekly real income  dollars 614.18 8.46 
CDC_cases No. of CDC-confirmed cases cases 3.79 7.92 
Notes: Calculated based on data from The Nielsen Company (U.S.), LLC and marketing databases provided by the 
Kilts Center for Marketing Data Center at The University of Chicago Booth School of Business. 
 
The quantity of peanut butter purchased was calculated by first summing the weekly total ounces 
of peanut butter brands across households and then by dividing that sum by the number of unique 
households that actually purchased peanut butter in any given week. Unit values were used as 
proxies for prices, which were not directly observed. The unit values for peanut butter and jelly 
were computed by dividing total expenditures by total ounces for each week. The coupon 
variable for peanut butter was constructed by first summing weekly values of coupons used and 
then dividing this sum by the number of unique households to express the variable on a per 
household basis. Weekly interpolations of real disposable personal income reported by the U.S. 
Department of Commerce (2011) were used as a proxy for household income. 
 
To adjust for inflation, all unit values, coupon values, and income were deflated using the 
consumer price index (CPI) available from the Bureau of Labor Statistics (BLS) of the U.S. 
Department of Labor. The base-year CPI corresponded to the period 1982–1984. The variable 
accounting for the influence of the recall (hereafter referred to as the outbreak variable) was 
constructed based on the weekly number of CDC-confirmed cases of Salmonella Tennessee 
infection due to the consumption of tainted peanut butter (CDC, 2007). Consistent with previous 
research, quarterly dummy variables were included in the model to capture potential seasonality 
in the demand for peanut butter (Rimal, Fletcher, and Deodhar, 2001), utilizing the fourth quarter 
as the base or reference category. Finally, a potential permanent structural change in the demand 
for peanut butter was captured by a dummy variable that assumed a value of 0 before the 
issuance of the recall and a value of 1 afterward. 
 

                                                
2 The conclusions drawn from the Nielsen data are those of the researchers and do not reflect the 
views of Nielsen. Nielsen is not responsible for, had no role in, and was not involved in 
analyzing and preparing the results reported herein. 
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Empirical Results 
 
The presence of stationarity in the historical series was tested with the ADF test. Table 2 presents 
the results from the ADF tests at the 5% significance level. 3  The null hypothesis of 
nonstationarity was rejected for the quantity purchased of peanut butter and the coupon value of 
peanut butter. However, the remaining variables were nonstationary. 
 
Table 2. Augmented Dickey–Fuller Tests for Stationarity Regarding the Natural Logarithms of 
the Respective Variables in the Time-Series Model 
Variable Test Statistic Decision (at 5% significance level) 
Quantity_PB −6.405 Reject nonstationarity 
Price_PB −3.179 Fail to reject nonstationarity 
Price_Jelly −3.113 Fail to reject nonstationarity 
Coupon_PB −3.803 Reject nonstationarity 
Income −1.638 Fail to reject nonstationarity 
sqrt_CDC_cases −1.840 Fail to reject nonstationarity 
Notes: Calculated based on data from The Nielsen Company (U.S.), LLC and marketing databases provided by the 
Kilts Center for Marketing Data Center at The University of Chicago Booth School of Business. 
 
Table 3 reports the results from the ADF tests for the first differences of all the series at the 5% 
significance level. As shown in Table 3, all the variables were stationary in first differences 
except for the income variable, which was stationary using second differences. 
 
Table 3. Augmented Dickey–Fuller Test for the First Differences of the Natural Logarithms of 
the Series  
Variable Test Statistic Decision (at 5% significance level) 
d_Quantity_PB −10.558 Reject nonstationarity 
d_Price_PB −8.757 Reject nonstationarity 
d_Price_Jelly −9.585 Reject nonstationarity 
d_Coupon_PB −9.987 Reject nonstationarity 
d_Income −1.473 Fail to reject nonstationarity 
d_sqrt_CDC_cases −10.505 Reject nonstationarity 
Notes: d_ indicates first differences. Calculated based on data from The Nielsen Company (U.S.), LLC and 
marketing databases provided by the Kilts Center for Marketing Data Center at The University of Chicago Booth 
School of Business. 
 
The appropriate number of lags to be included in the model was determined based on AIC and 
SIC metrics (Table 4). Based on the AIC and SIC, the appropriate lag length was 2 lags because 
the AIC and SIC values were minimized at lag two. 
 
Johansen’s (1995) cointegrating rank tests were performed: A sequence of trace tests and 
maximum eigenvalue tests were carried out, producing the optimal number of cointegrating  
 

                                                
3 Results from the ADF tests and ADF tests for the first differences were also supported by 
results from the KPSS tests. 
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Table 4. Akaike and Schwarz Information Criteria for the Appropriate Number of Lags 
Selection 

Lag AIC SIC 
0 −11.2969 −11.159 
1 −21.6462 −20.6809 
2 −23.5858* −21.7931* 
3 −23.5076 −20.8875 
4 −23.2668 −19.8193 
5 −23.2341 −18.9592 

Notes: Single asterisk (*) indicates the appropriate lag length. Calculated based on data from The Nielsen Company 
(U.S.), LLC and marketing databases provided by the Kilts Center for Marketing Data Center at The University of 
Chicago Booth School of Business. 
 
equations. Table 5 presents the results of the trace tests and the maximum eigenvalue tests at the 
5% significance level. The null hypothesis of zero cointegrating vectors was rejected. However, 
the null hypothesis of two cointegrating vectors was not rejected. 
 
Table 5. Johansen’s Cointegrating Rank Tests 

Maximum 
Rank, r 

Trace 
Statistic 

5% Critical 
Value Eigenvalue 

Maximum 
Eigenvalue 

5% Critical 
Value 

= 0 122.4639 94.15 . 52.9442 39.37 
≤ 1 69.5197 68.52 0.34528 37.4055 33.46 
≤ 2 32.1142* 47.21 0.25862 14.4832* 27.07 
≤ 3 17.6310 29.68 0.10940 9.5950 20.97 
≤ 4 8.0360 15.41 0.07389 6.3566 14.07 
≤ 5 1.6794 3.76 0.04958 1.6794 3.76 

Notes: Single asterisk (*) indicates the cointegrating rank. Calculated based on data from The Nielsen Company 
(U.S.), LLC and marketing databases provided by the Kilts Center for Marketing Data Center at The University of 
Chicago Booth School of Business. 
 
Next, the VEC model parameters were estimated. Basically, the main interest lies in the equation 
with the dependent variable related to first differences of the quantity purchased of peanut butter. 
The STATA 12 software package was used to perform the estimation. Table 6 presents the 
results from the VEC estimation for the equation pertaining to the quantity purchased of peanut 
butter at the 5% significance level. 
 
The R2 was 0.5149, indicative of a reasonably good fit. Several coefficients were significantly 
different from zero. In particular, the estimated coefficient of the price of peanut butter lagged 
two periods was negative, as anticipated, and was statistically different from zero. This result 
was consistent with Bakhtavoryan, Capps, and Salin (2014b). The estimated coefficients 
associated with the first and the second lags of the price of jelly were negative and statistically 
different from zero, as expected. However, Bakhtavoryan, Capps, and Salin (2014b) did not find 
this variable to be statistically significant. In addition, the estimated coefficient of the second lag 
of income was positive and statistically significant, as expected. This finding compared 
favorably with that of Bakhtavoryan, Capps, and Salin (2014b). Additionally, the estimated    



Bakhtavoryan et al.  Journal of Food Distribution Research 

July 2018 69 Volume 49, Issue 2 

Table 6. Estimation Results for the Quantity Purchased of Peanut Butter Equation from the 
Vector Error Correction Model, N = 123 

 
Coefficient p Value 

_ce1 
  L1 −0.737* 0.000 

_ce2 
  L1 0.050* 0.000 

   ln_Quantity_PB 
  LD −0.010 0.934 

L2D −0.065 0.523 
   ln_Price_PB 

  LD −0.051 0.724 
L2D −0.282* 0.049 

   ln_Price_Jelly 
  LD −0.225* 0.001 

L2D −0.131* 0.033 
   ln_Coupon_PB 

  LD −0.001 0.909 
L2D −0.005 0.554 

   ln_Income 
  LD2 −0.897 0.919 

L2D2 19.128* 0.030 
   sqrt_CDC_cases 

  LD −0.009 0.089 
L2D −0.009 0.077 

   Q1 −0.002 0.807 
Q2 −0.019* 0.019 
Q3 −0.012 0.160 
DUMMY −0.024* 0.005 
Constant 0.024* 0.004 

Notes: Single asterisk (*) indicates statistical significance at the 5% level. Log-likelihood = 1,573.709. L1 indicates 
that the variable is lagged one period, LD indicates lagged first differences, and _ce corresponds to the respective 
error-correction terms. Q1–Q3 are seasonal dummies and DUMMY is a dummy variable controlling for the 
structural shift in the demand for peanut butter. The estimation results of the remaining equations are available from 
authors upon request. Calculated based on data from The Nielsen Company (U.S.), LLC and marketing databases 
provided by the Kilts Center for Marketing Data Center at The University of Chicago Booth School of Business.  
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coefficient of the second-quarter seasonal dummy variable was negative and significantly 
different from zero, in accordance with the estimation results by Bakhtavoryan, Capps, and Salin 
(2014b), who also found seasonality to be a statistically significant factor. Consistent with the 
previous study, the estimated coefficient associated with the dummy variable was negative and 
statistically significant, indicating a structural change in the demand for peanut butter. Moreover, 
as in the previous study, the estimated coefficients associated with the coupon variable were 
statistically insignificant. 
 
Based on one-tailed tests, the estimated coefficients of the first and second lags of the outbreak 
variable were negative and statistically significant, supporting the hypothesis of negative impacts 
associated with food safety incidents. However, this result was at odds with the finding by 
Bakhtavoryan, Capps, and Salin (2014b) that the parameter estimates associated with the 
outbreak variable were positive, implying that the outbreak positively influenced the quantity 
purchased of peanut butter. Differences between the time-series VEC model and the 
structural/econometric model likely account for the difference in the estimation results in regard 
to the outbreak variable. This discrepancy provides empirical evidence that alternative model 
specifications may generate nonrobust results. As such, the use of time-series models as well as 
conventional structural/econometric models is recommended when analyzing food safety issues. 
 
DAG Application 
 
Before estimating and discussing impulse-response functions and FEV decompositions, it is 
necessary to illustrate the application of the DAGs to find how the six variables were ordered in 
contemporaneous time using the R package pcalg (Kalisch et al., 2012). The starting point is 
Figure 1, the complete undirected graph of all possible edges among the six variables. Figure 2 
provides the edges that the algorithm suggested as statistically significant at the 10% level. 
 
Contemporaneous causal ordering was discovered in several steps. First, the algorithm based on 
unconditional correlations eliminated all statistically zero edges and retained those that were 
statistically nonzero (Spirtes, Glymour, and Scheines, 2000). Then, the algorithm checked all the 
remaining conditional correlations and retained the ones that were statistically nonzero. If the 
edges were fully one-side directed,4 a unique set of correlations could have been imposed on 
Bessler and Akleman’s DAG/Bernanke VAR model. However, per Figure 2, one edge is bi-
directional, which indicated that there existed systems of observationally equivalent 
contemporaneous causality relationships. In that case, there was a need to find “the best” 
Bayesian Network that represented the data. 
 
Although finding the best Bayesian Network structures is NP-hard (Chickering, Meek, and 
Heckerman, 2003),5 feasible techniques exist for small networks (e.g., Singh and Moore, 2005;  
 

                                                
4 That is, it is not true that X! → X!ϵ ξ and X! ← X!ϵ ξ. 
5 In computational complexity theory NP-hardness (nondeterministic polynomial-time hardness) 
is the property that defines a class of problems. Formally, a decision problem H is NP-hard when 
for every problem L in NP, there is a polynomial-time reduction from L to H. NP (non-
deterministic polynomial time) is a complexity class used to describe certain types of decision 
problems. For more information, see the work by Cormen et al. (2009). 
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Figure 1. Complete Undirected Graph on Innovations from the VEC Model 
Notes: Natural logarithmic transformation was used on all variables, with the square root transformation applied to 
the CDC_cases variable. 
 

 
Figure 2. Generated DAG on Innovations from the VEC Model 
Notes: Natural logarithmic transformation was used on all variables, with the square root transformation applied to 
the CDC_cases variable. Calculated based on data from The Nielsen Company (U.S.), LLC and marketing databases 
provided by the Kilts Center for Marketing Data Center at The University of Chicago Booth School of Business. 
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Silander and Myllymaki, 2006; Haigh and Bessler, 2004). Haigh and Bessler (2004) modified 
and applied Schwarz’s loss metric to the alternative systems of causality and then chose the 
system of causality that minimizes the Schwartz metric. This study followed the method 
suggested by Silander and Myllymäki (2006), rather than the Haigh and Bessler approach, to find 
the best Bayesian Network structure. To use the Silander and Myllymäki method, the scoring 
functions have to be modular (i.e., given the data, the score of a Bayesian Network structure G = 
(G1, …, Gn) for variables X = (1, …, n) must be decomposable to local scores:  
 

(5) score(G) = score! G!!
!!! . 

 
The score of the network was the sum of the local scores that depend only on the conditional 
probability for one variable and its parents. Most of the known scores, such as SIC and AIC, are 
decomposable (Chickering, 1995). By measuring the local scoring function, the goodness of the 
parents of Xi is found. This idea naturally leads to finding the best parents for a variable Xi in any 
given parent candidate set C:  
 

(6) g!∗ C = arg!⊆!max score! g . 
 
The Bayesian Information criterion (BIC) is used in this study as a scoring rule, following 
Silander and Myllymäki (2006) and using the method discussed above. Based on Figure 2, there 
existed two possible relationships in the Bernanke structural VAR to form the DAG/Bernanke 
VAR model. Therefore, two local scores had to be estimated: 

1. ln(Price_Jelly) → ln(Coupon_PB) (i.e., the ln(Price_Jelly) variable is the parent for the 
ln(Coupon_PB) variable); 

2. ln(Coupon_PB) → ln(Price_Jelly) (i.e., the ln(Coupon_PB) variable is the parent for the 
ln(Price_Jelly) variable). 

 
A choice had to be made between these two possible and competing systems of causal relations 
based on the provided  maximum value. The highest score was provided by the option in which 
ln(Coupon_PB) was the parent for ln(Price_Jelly) (Table 7). Imposing these relationships, 
resolved the problem of contemporaneous correlation. Figure 3 shows the final DAG after this 
imposition. 
 
Table 7. Two Alternative (Observationally Equivalent) Systems of Contemporaneous Causal 
Relations 

Type System 1 System 2 
Parent ln(Price_Jelly) ln(Coupon_PB) 
Child ln(Coupon_PB) ln(Price_Jelly) 
Score Value 80.60 300.61 

Notes: Calculated based on data from The Nielsen Company (U.S.), LLC and marketing databases provided by the 
Kilts Center for Marketing Data Center at The University of Chicago Booth School of Business. 
 
Having addressed the issue of contemporaneous correlation, dynamic interrelationships among 
the variables in the VEC model can be analyzed using methods of innovation accounting such as 
FEV decompositions and impulse-response functions. FEV decompositions assist in quantifying 
the importance of each shock in explaining the variation in each variable in the model. This    
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Figure 3. Final DAG Based on Innovations from the VEC Model 
Notes: Natural logarithmic transformation was used on all variables, with the square root transformation applied to 
the CDC_cases variable. Calculated based on data from The Nielsen Company (U.S.), LLC and marketing databases 
provided by the Kilts Center for Marketing Data Center at The University of Chicago Booth School of Business. 
 
metric was calculated as a fraction of the FEV of each variable at different forecast horizons. 
Impulse-response functions showed the impacts of unit innovations in a particular variable on all 
variables in the model over time. 
 
Table 8 gives the FEV decomposition from the 2-lag VEC model for the quantity of the peanut 
butter purchased for 1-, 8-, 16-, 26-, and 52-week forecast horizons. If an innovation of a 
particular variable accounted for a high percentage of the FEV, then it was considered to be a 
determinant of the quantity purchased of peanut butter. 
 
Table 8. Forecast Error Variance Decomposition for the Quantity of Peanut Butter Purchased in 
Percentages 

Horizon 
in Weeks Quantity_PB Price_PB Price_Jelly Coupon_PB Income CDC_cases 

1 72.95 24.08 1.58 1.39 0.00 0.00 
8 59.46 21.32 7.79 6.65 0.79 3.98 
16 57.87 20.85 7.77 6.77 1.87 4.87 
26 57.16 20.61 7.77 6.70 2.65 5.09 
52 56.64 20.38 7.84 6.63 3.41 5.09 

Notes: Rows do not add up to 100% due to rounding errors. Natural logarithmic transformation was used on all 
variables, with the square root transformation applied to the CDC_cases variable. Calculated based on data from The 
Nielsen Company (U.S.), LLC and marketing databases provided by the Kilts Center for Marketing Data Center at 
The University of Chicago Booth School of Business. 
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About 73% and 24% of the 1-week FEV of the quantity purchased of peanut butter were 
accounted for by innovations in the quantity of peanut butter purchased and the real price of 
peanut butter, respectively. For longer-term horizons, approximately 57% and 20% of the error 
variance was accounted for by innovations in the quantity purchased of peanut butter and the real 
price of peanut butter, respectively. For the 1-week horizon, innovations in the real price of jelly 
and real coupon values contributed less than 2% to the FEV of the quantity purchased of peanut 
butter. At the same time, innovations in the real price of jelly and real coupon values contributed 
about 8% and 7%, respectively, to the FEV of the quantity purchased of peanut butter for longer-
term horizons. Innovations in real income and the number of confirmed cases of illnesses began 
impacting the quantity purchased of peanut butter at a horizon of 8 weeks. In particular, 
innovations in real income and number of confirmed cases of illnesses accounted for about 3% 
and 5% of the FEV, respectively, for longer-term horizons. 
 
Figure 4 presents DAG/Bernanke impulse-response functions in graphic format in an attempt to 
quantify the impact of a 1-standard-deviation shock in the error term or innovation of the 
variables on the quantity purchased of peanut butter. By applying this one-time exogenous shock 
to each variable, it was possible to trace out a dynamic picture of how the variables responded 
over a period of 52 weeks. In Figure 4, the impulse responses for all variables were normalized 
by dividing them by the historical standard deviation of the corresponding error term 
(innovation) in the VEC model to make the graphs comparable with each other irrespective of 
measurement units. In Figure 4, the responses are listed at the top of each column, given a one-
time-only shock in the variables listed at the beginning of each row. 
 

 
Figure 4. Impulse-Response Functions Generated by the Vector Error Correction Model 
Notes: Natural logarithmic transformation was used on all variables, with the square root transformation applied to 
the CDC_cases variable. Calculated based on data from The Nielsen Company (U.S.), LLC and marketing databases 
provided by the Kilts Center for Marketing Data Center at The University of Chicago Booth School of Business.  
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Our primary interest lies in the response of the quantity of peanut butter purchased (the first 
column of Figure 4) following an initial one-time-shock only in the respective variables. 
According to Figure 4, the impacts dampened out over the 52-week period. The response of the 
quantity of peanut butter purchased to its own shock was positive and peaked in week 1. As 
expected, the response of the quantity of peanut butter purchased to the shock in the real price of 
peanut butter was negative with the peak taking place in week 1 as well. The response of the 
quantity of peanut butter purchased to the shock in the real price of jelly started out negative, as 
anticipated, for the first 2 weeks following the shock, but subsequently turned positive from 
weeks 3 through 14. The peak of the impact of the real price of jelly took place in week 2. The 
response of the quantity of peanut butter purchased to the shock in the real income was positive, 
peaking at week 2. The response of the quantity of peanut butter purchased to the shock of 
coupon values was negligible. Finally, the response of the quantity of peanut butter purchased to 
the shock in the number of confirmed cases of illnesses due to peanut butter consumption was 
negative throughout the 52-week period, with the peak occurring in week 2. 
 
Concluding Remarks 
 
This study presented an alternative methodological approach of time-series analysis, in contrast 
to a structural analysis by Bakhtavoryan, Capps, and Salin (2014b), to investigate the demand for 
peanut butter in the wake of a product recall. This study estimated a 2-lag DAG/Bernanke VEC 
model using weekly time-series data from July 26, 2006, through December 30, 2008, and using 
the number of confirmed cases of illnesses due to peanut butter consumption to account for the 
effects of the recall. The estimation results identified the real price of peanut butter, real price of 
jelly, real income, the outbreak variable, a structural dummy variable, and seasonality as 
statistically significant determinants of the quantity purchased of peanut butter. In particular, 
consistent with previous research, the real price of peanut butter negatively influenced the 
quantity purchased of peanut butter (Rimal, Fletcher, and Deodhar, 2001), the real price of jelly 
negatively impacted the quantity purchased of peanut butter (He et al., 2004; Smith, Rossi, and 
Allenby, 2016; Caine-Bish and Scheule, 2007), real income positively affected the quantity 
purchased of peanut butter (Rimal, Fletcher, and Deodhar, 2001), and the recall negatively 
impacted the quantity purchased of peanut butter (Swartz and Strand, 1981; Smith, van 
Ravenswaay, and Thompson, 1988; van Ravenswaay and Hoehn, 1991; Burton and Young, 
1996; Verbeke and Ward, 2001; Marsh, Schroeder, and Mintert, 2004; Piggott and Marsh, 2004; 
Pritchett et al., 2007, Duan, 2014), with the last empirical finding being consistent with the 
results from the prior studies reviewed. Also, in accordance with previous research, a structural 
change in the demand for peanut butter was found in the wake of the recall (Bakhtavoryan, 
Capps, and Salin, 2012), and seasonality emerged as a statistically significant driver of the 
quantity purchased of peanut butter (Rimal, Fletcher, and Deodhar, 2001). 
 
In addition, all findings compare favorably with those by Bakhtavoryan, Capps, and Salin 
(2014b), with two exceptions. First, the previous study found the real price of jelly to be a 
statistically insignificant driver of the quantity purchased of peanut butter. Second, and more 
importantly, the two studies are at odds concerning the impact of the outbreak variable on the 
quantity purchased of peanut butter. In particular, while Bakhtavoryan, Capps, and Salin (2014b) 
found that the outbreak variable positively affected the quantity purchased of peanut butter, the 
present study found that the outbreak variable had a negative impact on the quantity purchased of 
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peanut butter. The discrepancy can likely be attributed to differences in the methodological 
approach (i.e., the use of a VEC model as opposed to a structural/econometric model). The use of 
time-series models in analyzing the impacts of food safety incidents has been sparse in the extant 
literature. Hence, using time-series models as well as structural/econometric models is 
recommended when examining impacts of food safety incidents as a check on the robustness of 
the results. 
 
Foodborne illnesses remain a topical issue, and the empirical finding showing the negative 
impact of the recall on the peanut butter category has implications for public regulatory 
institutions responsible for assuring the safety of the nation’s food supply. Moreover, food 
manufacturers’ strategic decisions about quality control programs are informed by this research. 
Given the cost associated with food recalls, the empirical findings from this study provide further 
incentive for government regulatory bodies to design and implement recall-preventing policies as 
well as commit more effort and resources to enhancing their capacity to identify and prevent 
food safety issues. For peanut butter manufacturers, the extent of spillover from an implicated 
brand to the entire category constitutes an important and interesting element. As such, the 
empirical results are essential in that they provide manufacturers with an incentive to adopt and 
invest in safe production practices as well as closely follow food safety standards to avoid 
experiencing potential losses in sales in the wake of recalls. In any case, the success of these 
efforts is inextricably linked with a proper understanding of the economic consequences resulting 
from food safety issues and the welfare benefits stemming from food safety measures. Finally, 
the causal relationships that emerge from the study of the peanut butter product market are 
generalizable to the management of food safety events, and similar case studies can also be 
replicated for other products implicated in food safety issues. 
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