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A Selective Overview of Panel Data with Applications in SAS® 
 
Section I. Introduction 
 
In applied econometrics, most researchers use methods of analysis developed either for cross-
sectional data or time-series data. At times, practitioners have access to data not only over time 
but also by cross-section. This type of data set often is referred to as pooled data or panel data, 
describing each of a number of cross-sectional entities (for example, individuals, households, 
states, firms, securities, brands of products), across a sequence of time periods.  
 
For example, analysts might want to consider the demand for gasoline on which they have data on 
a monthly basis as well as by state. The monthly data might run from January 2002, to December 
2006. The number of possible observations for analysis is 3,000, the product of 60 time periods of 
monthly observations for each of the 50 states in the United States. As another illustration, analysts 
might want to understand the behavior of a sample of households over time in purchasing a given 
food item. In this case, the cross-sectional units correspond to the number of households in the 
sample (let’s say, for the sake of round numbers, 1,000), and the time period units might 
correspond to four quarters of a particular year. In this instance, the total number of observations 
available to the analyst is 4,000. 
 
The extant literature is replete with pooled data sets used in empirical applications. Examples are: 
(1) annual demand for natural gas in residential and commercial markets by state (Balestra and 
Nerlove, 1966); (2) demand for gasoline and diesel fuel for agricultural use by extension districts 
in Virginia (Capps and Havlicek, 1978); (3) monthly rates of return for a sample of securities 
(Dielman, Nantell, and Wright, 1980); (4) yields of pine trees on various plots (Ferguson and 
Leech, 1978); (5) hourly demand for electricity by individual households (Granger et al., 1979); 
(6) monthly consumer purchases of gasoline for different states (Mehta, Narasimham, and Swamy, 
1978); (7) per capita consumption of fluid milk over ten regions of the United States (Ward and 
McDonald, 1986); and monthly coupon promotions for U.S. households (Ward and Davis, 1978) 
 
Empirical applications of micro-econometrics often involve longitudinal or panel data in which 
cross-sectional entities are observed over time. Three notable examples of panel data are the Panel 
Study of Income Dynamics (PSID), the National Longitudinal Surveys of Labor Market 
Experience (NLS), and the Nielsen HomeScan Panel. These panel data sets rest on interviews from 
thousands of individuals or households over time. Baltagi (2001), Dielman (1983, 1989), and 
Nerlove (2003) are definitive sources of information about panel data procedures, with extensive 
references to sources of panel data, examples of applications of panel data, and discussions of the 
advantages and limitations of panel data.   
 
Section II. Key Question  
 
The key question in dealing with panel data is whether analysts can we live with common pooled 
estimates of the coefficients of the explanatory variables. If the answer to this question is yes, then 
single-equation models are the way to proceed with the use of PROC PANEL. If the answer to this 
question is no, then we can run separate regressions by cross-sectional unit, that is construct a 
seemingly unrelated regression (SUR) model, provided sufficient observations exist to not only 
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estimate parameters of the model but also to conduct statistical tests of hypotheses. In this case, 
PROC SYSLIN or PROC MODEL are the appropriate SAS procedures. This decision is consistent 
with Sims’ (1989) principle that a meaningful modeling effort should be, in part, tailored to the 
analytical purpose at hand. To illustrate, can we live with a common pooled estimate of the own-
price elasticity of demand for gasoline in the United States, or do we need to consider individual 
own-price elasticities by state or by region?  
 
As a starting point, analysts might run different regressions by cross-sectional unit, and test for the 
equality of the coefficients of common explanatory variables across the cross-sectional entities. 
This hypothesis test often rests on the use of F-tests. If one cannot reject the null hypothesis of the 
equality of these coefficients, then on the basis of statistical grounds one might pool the data, use 
a single-equation specification, and subsequently obtain unique estimates of the coefficients of 
common explanatory variables, such as a unique estimate of the own-price elasticity of demand.  
If however one rejects this hypothesis, then statistically speaking one might want to run separate 
regressions, or at least allow for different parameter estimates of the coefficients associated with 
the common explanatory variables by cross-sectional unit. 
 
The advantages of pooling the data by cross-section and by time period are: (1) increasing the 
sample size of observations which from a purely statistical point of view increases the power of 
various test of hypotheses; (2) alleviating potential collinearity problems through combining 
variation across micro units with variation over time (Kuh and Meyer, 1957); (3) dealing with 
heterogeneity in the micro units; and (4) allowing more detailed analysis of dynamic adjustment 
through the examination of reactions over time by the cross-sectional entities. The limitations of 
pooling the data often rest on the use of more complex econometric procedures to deal with time-
series and cross-sectional variability in the sample of observations. Aside from adding 
complexities to the econometric model, either in the way of model specification or model 
estimation, there is virtually little downside in pooling the data.  
 
Section III. Single-Equation Model Specification Associated with the Pooling of Time-Series 
and Cross-Sectional Data or with the Use of Panel Data 
 
The single-equation model specification associated with the use of panel data or pooled data is as 
follows:  
  
  

(1) 
 

 
 
 
Generically, Yit represents the dependent (or endogenous) variable, Xit,1,…,Xit,k correspond to the 
k explanatory variables for cross-section I in the time period t and 𝜀𝜀it represents the error term for 
cross-section i in time period t. In order to obtain the appropriate parameter estimates of the 
coefficients of the set of explanatory variables, it is necessary to initially stack the pooled data by 
cross-section. That is, without particular ordering of cross-sections, arrange the data for cross-
section 1 and its associated t observations of the dependent variable and the set of explanatory 
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variables over time, then do the same for cross-section 2 through cross-section k. The SORT 
procedure (PROC SORT) allows the stacking of the data into the required cross-sectional time-
series format. Assuming a balanced design, wherein the same number of time periods exists in 
each cross-section, the sample size then is the product of the number of cross-sections (N) and the 
number of time periods in each cross-section (T), or simply NT. Subsequently, the parameter 
estimates of the coefficients of the set of explanatory variables are given as:    
 

 
(2)  

 
 
 
 
 
 
 
 
 
 
The variances of these estimated parameters are given by: 
 

(3)    𝑣𝑣𝑣𝑣𝑣𝑣�𝐵𝐵�� = (𝑥𝑥𝑇𝑇Ω−1𝑥𝑥)−1 
 
The estimates of the standard errors of the parameter estimates are simply the square root of the 
estimates of the variances of these estimated parameters. Essentially, the parameter estimates and 
the estimates of the variances of these estimated parameters rest on the use of generalized least 
squares (GLS). The variance-covariance matrix of the error terms is given as (see Kmenta, 1986): 
 

(4)  
 
 
 
 
 
 
 
 
 
 
 
 
This specification provides a general framework for the discussion of different models designed 
to deal with pooled cross-section and time series observations or panel data. In particular, the 
relationship among the error terms of various cross-sectional entities at some specific time is likely 
to be different from the relationship among error terms of a specific cross-sectional entity at 
different periods of time.  



4 
 

Section IV. Typical Assumptions When Dealing with the Pooling of Time Series and Cross-
Sectional Data or Panel Data 
 
As previously discussed, the key element to obtain the parameter estimates and their associated 
variances (and standard errors) rests on the elements of the omega matrix. In this section, we 
discuss the typical assumptions made regarding the elements of the variance-covariance matrix of 
the error terms. In this light, we discuss: (1) the pooled model; (2) the Parks model; (3) the error 
components model; (4) the DaSilva model; and (5) the analysis of covariance model.   
 

Pooled Model 
 
The pooled model is very straightforward. With this model, we simply use ordinary least squares 
(OLS) to estimate the parameters and the associated standard errors. This procedure is tantamount 
to the assumption that the omega matrix (the variance-covariance matrix of the error terms) is the 
identity matrix of order NT x NT. This assumption in most cases is untenable. 
  

Parks Model 
 
The Parks model (Parks, 1969) recognizes heteroscedasticity and mutual correlation across cross-
sections and simultaneously recognizes autoregressive schemes within cross-sections. This model 
is applicable only for balanced designs. With the Parks model, we assume that the error terms of 
the respective cross-sections are heteroscedastic (unequal variances) and that the error terms within 
each cross-section follow a first-order autoregressive process.  
 

 
(5)  

 
 
 
The parameter ρ potentially varies from one cross-sectional unit to another. With this set of 
assumptions, the variance-covariance matrix of error terms is given by (see Kmenta, 1986): 
 
 

(6a) 
 
 
 
 
 

 
(6b) 

 
 
 

(heteroscedasticity) 
(cross-sectional independence) 
(autoregression) 
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Note that each of the 0’s represents a (TxT) matrix of zeros. Importantly, in this version of the 
Parks model, we assume that the error terms for different cross-sectional units at time t are 
mutually independent.  
 
In another version of this model, we may relax this assumption of mutual independence. 
 

 
 

(7) 
 
 
 
 
 
 
 
 
 
 
 
In this case, the variance-covariance matrix of the respective error terms looks like (see Kmenta, 
1986): 
 
 

(8a)  
 
 
 
 
 
 
 
(8b) 

 
 
 
 
 
 
The parameter 𝜎𝜎ii and 𝜎𝜎ij (i ≠ j) form the symmetric matrix phi described as: 
 
 

(8c)  
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The Parks method estimates a first-order autoregressive model with contemporaneous correlation 
of the error terms of the cross-sectional units. With the assumption of cross-sectional independence 
in in the Parks model, it is necessary to obtain N estimates of the variance parameters and N 
estimates of the rho parameters. However, with the assumption of mutual correlation of the cross-
sectional units, it is necessary to obtain N(N+1)/2 +N estimates of the respective parameters.  

Error Components Model 
 
In the error components model, the error term is composed of three independent components – one 
component associated with time, the second component associated with the cross-sectional units, 
and the third component varying in both dimensions (Fuller and Battese, 1974; Wallace and 
Hussain, 1996; Wansbeek and Kapteyn, 1989; and Nerlove, 1971).1  
 
Mathematically, as per Kmenta (1986),  
 
 

(9) 
where  

 
 
 
 

and the components ut, vt, and wit satisfy the following conditions: 
 

(10) 
 
 
 
 
 
Based on this set of assumptions, εit is homoscedastic with variance given by: 
 

(11) 
  
 
This expression corresponds to the sum of the variances of each of the three components. Further, 
the correlation coefficient of εit and εjt (i ≠ j) that is, the correlation of the error terms of given 
cross-sectional units at a given point of time, is expressed as:  

 
(12) 

 
 

                                                 
1 This specification also is known as a two-way random effects model. At times, analysts may employ a one-way 
random effects model, wherein the error term is composed of two independent components. To conform to space 
limitations, we discuss only the two-way random effects model. 
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The correlation coefficient of εit and εis (t ≠ s) that is, the correlation of the error terms of a given 
cross-sectional unit at two different points of time is expressed as:  
 

(13) 
 
For each cross-sectional unit, the correlation of the error terms over time remains unchanged 
irrespective of how far apart they are at different time periods. This assumption contrasts sharply 
with the assumption of first-order autoregression in the Parks model, which implies that the degree 
of correlation declines geometrically with the time distance involved. Finally, with the error 
components model, the correlation coefficient between εit and εjs is 0 for i ≠ j and t ≠ s (Kmenta, 
1986). 
 
With the error components model, the variance-covariance matrix of the error terms is expressed 
as (Kmenta, 1986): 
 

(14a) 
 
 
 
  
 
 
 
 
 

(14b)    
 
 
 
 
 
As such, to estimate the elements of the omega matrix, it is necessary to obtain estimates of only 
three parameters. We estimate elements of Ω as (Kmenta, 1986): 
 
 
 

(15a) 
 
 
(15b) 
 
 
 
(15c) 

 
where eit represents the residuals obtained by applying the OLS method to the pooled data. 
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Da Silva Model 

The Da Silva model (Da Silva, 1975) is also known as the variance-component moving average 
model. This model is similar to the error components model previously discussed. The model 
consists of a variance component for cross-sections and a various component for time periods. The 
Da Silva method estimates a variance-component moving-average error process, that is the error 
term corresponds to a moving-average time-series of order m < T-1 for each cross-section i. As 
such,  
 

(16)  𝜀𝜀𝑖𝑖𝑖𝑖 = 𝛼𝛼0𝑒𝑒𝑖𝑖𝑖𝑖 + 𝛼𝛼1𝑒𝑒𝑖𝑖𝑖𝑖−1 + ⋯+ 𝛼𝛼𝑚𝑚𝑒𝑒𝑖𝑖𝑖𝑖−𝑚𝑚  𝑡𝑡 = 1, … ,𝑇𝑇;  𝑖𝑖 = 1, … ,𝑁𝑁 
 
In this specification,  are parameters, and 𝑒𝑒𝑖𝑖𝑖𝑖 is a sequence of mutually uncorrelated 
random variables such that for each i 𝐸𝐸(𝑒𝑒𝑖𝑖) = 0 𝑣𝑣𝑎𝑎𝑎𝑎 𝐸𝐸(𝑒𝑒𝑖𝑖2) = 𝜎𝜎𝑒𝑒2. 
 
With this procedure, in addition to the parameters associated with the explanatory variables, the 
variance components associated with the respective cross-sections and time periods, it is necessary 
to estimate m+1 parameters in regard to the error term. Importantly, this model rests on the 
identification of m.2    
 

Analysis of Covariance Model 
 
Up to this point, the implicit assumption common to these models discussed thus far using pooled 
data is that the coefficients of the explanatory variables are equal across time periods and across 
cross-sectional units. We now discuss the analysis of covariance (ANACOVA) model where this 
assumption is relaxed. In the ANACOVA model, each cross-sectional unit and each time period 
is characterized by dummy variables (intercept shifters). 
 
 

(17) 
    
    
   = 1 for the ith cross-sectional unit 
   = 0 otherwise  
 
   =1 for the tth time period 
   = 0 otherwise (t = 2, 3, …, T) 
 
This model is applicable for unbalanced designs. The ANACOVA model also is known as the 
Least Squares with Dummy Variables (LSDV) model. Each cross-sectional unit and/or time series 
unit is characterized by dummy variables. This model works well with unbalanced designs. This 
model allows analysts to test for equality of intercepts and/or estimated coefficients. 
 
The appropriate estimation technique is OLS. One does not have to include both cross-sectional 
and time indicator variables in the model. Depending on the magnitude of N, the number of cross-
                                                 
2 The choice of m typically rests on the use of model selection critera such as the Akaike Information Criteria (AIC). 
The Schwart Information Criteria (SIC), or the Hannon-Quinn Information Criteria (HQC). 
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sectional entities, and T, the number of time periods, the number of parameters to be estimated can 
greatly increase. The number of parameters to be estimated with N cross-sectional entities is N-1, 
and the number of parameters to be estimated with T time periods is T-1. Often, interest only lies 
in the inclusion of the cross-sectional indicator variables.  
 
With the most general form of the ANACOVA model, we can test whether the inclusion of the 
cross-sectional dummy variables or the inclusion of the time-series dummy variables is necessary. 
To that end, we perform joint F-tests corresponding to the set of cross-sectional effects or time-
series effects. Importantly, the ANACOVA or LSDV model implicitly assumes that the 
coefficients associated with the set of k explanatory variables, the so-called “slope parameters,” 
are constant across time periods as well as cross-sectional units.  
 
Importantly, violations of the classical assumptions of the error terms might occur with the pooled 
model or the ANACOVA model. If these error terms exhibit autoregressive or heteroscedastic 
patterns, then the use of several methods (e.g. the Newey-West procedure (Newey and West, 
1987)) that deal with these issues in lieu of OLS is the appropriate estimation method. These 
methods produce heteroscedasticity-consistent (HCCME) and heteroscedasticity- and 
autocorrelation-consistent (HAC) covariance matrices. The presence of heteroscedasticity and 
autocorrelation can result in inefficient and biased estimates of the covariance matrix in the of OLS 
estimation.  
 
Section V. Fixed and Random Effects 
 
It is worthwhile to note a similarity of the ANACOVA or LSDV model with the error components 
model. The comparison is especially pertinent with the LSDV model, where we include only 
intercept shifters corresponding to the cross-sectional units, and with the two-component model, 
where the decomposition of the error term rests only on the cross-sectional component and a 
random component. 
 
In the case of the error component model, the specific characteristics of the cross-sections rest on 
a normally distributed random variable, whereas in the case of the ANACOVA or LSDV model, 
these specific characteristics rest on parameters associated with dummy variables. Statistically 
speaking, the error components model often is referred to as a random-effects model, whereas the 
ANACOVA model is referred to as a fixed-effects model (Mundlak, 1978). The advantage of using 
the error components model is the reduction in the number of parameters to estimate. Thus, with 
the error components model, we save on degrees of freedom vis-à-vis the ANACOVA model.  
 
The error components model rests on estimating the variance of the cross-sectional component, 
whereas the covariance model rests on estimating minimally N-1 additional parameters. 
Consequently, there is a loss of statistical efficiency associated with the ANACOVA model in 
comparison to the error components model.  
 
The disadvantage of the random-effects or error components model is the potential correlation of 
the cross-sectional component with the set of explanatory variables in the model. If this correlation 
exists, then the parameter estimates of the coefficients associated with the explanatory factors are 
biased and inconsistent. This issue does not arise with the fixed-effects covariance model. In a 
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nutshell, the crucial factor to consider is the possibility of correlation between the cross-sectional 
units with the explanatory variables of the model.  
 
It is always good practice to conduct a Hausman test (1978) with random-effects models. Under 
the null hypothesis of the absence of any correlation between the variance components and the set 
of explanatory variables, the parameter estimates from the error components model should not be 
very different from the parameter estimates from the ANACOVA or LSDV model. If 𝛽𝛽� denotes 
the least squares covariance estimator and 𝛽𝛽� denotes the error component estimator, then               
𝑞𝑞� = �̂�𝛽 − 𝛽𝛽� is the basis for the relevant test statistic. The test statistic is given by: 
 

(18)             , where 
 
The test statistic rests on both the magnitude of the parameter estimates and the variance-
covariance matrix of the difference between the sets of parameters estimates. Assuming k 
explanatory variables including a constant term, the test statistic asymptotically follows a chi-
squared distribution with k-1 degrees of freedom. 
 
Section VI. Estimation Procedure 
 
The PANEL procedure analyzes a class of linear econometric models that arise when time-series 
and cross-sectional data are combined. The panel data models can be grouped into several 
categories depending on the structure of the error term. The PANEL procedure allows the 
estimation of: (1) the pooled model; (2) one-way and two-way random effects models; (3) one-
way and two-way fixed-effects models; (4) cross-sectionally heteroscedastic and time-wise 
autogressive error terms of the Parks model; and (5) moving average error terms of the Da Silva 
model.  
 
With the PROC PANEL procedure for unbalanced or balanced designs, it is necessary initially to 
sort the data by cross-section and then by time period. The PROC SORT procedure works in this 
capacity. The model statement for PROC PANEL is similar to the model statement for PROC REG 
or PROC AUTOREG but for the options. For the pooled model, the appropriate options are / 
pooled HAC Neweywest. Note that HAC Neweywest allows for the heteroscedastic and 
autocorrelation correction of the error terms with the Newey-West procedure (Newey and West, 
1987). For the one-way or two-way fixed-effects model, the options are / fixone (or fixtwo) HAC 
Neweywest3. In the case of the one-way or two-way random-effects model, there are several 
options given that PROC PANEL allows four different estimation methods of random-effects 
models. 

 
  
 
 
 

                                                 
3 With the option fixone, PROC PANEL provides estimates of the coefficients of cross-sectional dummy variables. 
With the option fixonetime, PROC PANEL provides estimates of the coefficients of time-series dummy variables. 

Fuller-Battese Method VCOMP = FB RANONE or RANTWO 

Wansbeek-Kapteyn Method (default) VCOMP = WK RANONE or RANTWO 

Wallace-Hussain Method VCOMP = WH RANONE or RANTWO 

Nerlove Method VCOMP = NL RANONE or RANTWO 
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Additionally with the option bp in the case of one-way random effects models or the option bp2 in 
the case of two-way random effects models, it is possible to test the null hypothesis of the absence 
of random-effects is done. The test developed by Breusch and Pagan (1980) is distributed as a x2-
statistic with one degree-of-freedom for one-way random effects models and with two degrees-of-
freedom for two-way random-effects model. 
 
For the Parks model, the appropriate options are / Parks Phi rho, and for the Da Silva model, the 
appropriate options are / Dasilva m=?. With the Da Silva model, it is necessary to specify m, that 
is replace ? with an integer, the order of the moving-average process. The default is m=1. The 
options HAC and Neweywest also may be added with the estimation of the respective random-
effects models, the Parks model, and the Da Silva model. 
 
Section VII. Sample Problem of the Use of PROC PANEL 
 
The data for this sample problem consists of five retailers (number of cross-sections) across 165 
weeks (number of time periods) or 825 observations in total. This example corresponds to a 
balanced design. The idea is to pool the data in order to obtain a common estimate of the own-
price elasticity for a food product. A simplistic version of the model specification for pedagogical 
purposes is given by:  

logunitsit=a0+a1*logpit+a2*logdiscit+a3*logdispit+a4*logadit+eit, 
 
where i refers to cross-sections (retailers) and t refers to time periods (weeks). The dependent 
variable logunitsit refers to the amount of the food product sold by retailer i in week t; logpit refers 
to the price of the food product sold by retailer i in week t; logdiscit corresponds to the amount of 
the discount associated with this food product sold by retailer i week t; logdispit refers to the amount 
of display space provided for this food product sold by retailer i in week; and logadit corresponds 
to the amount of advertising expenditures associated with this food product sold by retailer i in 
week t.  
 
Given the mathematical form of the model, the coefficients correspond to elasticities, the 
percentage change in units sold of this cereal product attributed to a one percent change in price 
(a1), the amount of the discount (a2), the amount of display space provided (a3), and the amount of 
advertising expenditures (a4). The coefficient a1 is hypothesized to be negative to conform to the 
law of demand in economics, while the signs of the remaining coefficients are hypothesized to be 
positive.  
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The SAS program for this analysis of a balanced panel of retail food sales data is as follows: 
 
Proc Sort data=Ford2.retail_food; 
 by retailer date; 
run; 
 
OLS pooled model with HAC correction 
 
Proc Panel data=Ford2.retail_food; 
 id retailer date; 
 model log_units = log_p log_disc log_disp log_ad /pooled HAC Neweywest; 
run; 
 

One-way fixed effects model cross-sectional effects only  
 
Proc Panel data=Ford2.retail_food printfixed; 
 id retailer date; 
 model log_units = log_p log_disc log_disp log_ad /fixone HAC Neweywest; 
run; 
 

Two-way random effects model(Fuller-Battese method) 
 
Proc Panel data=Ford2.retail_food; 
 id retailer date; 

model log_units = log_p log_disc log_disp log_ad /rantwo vcomp=fb HAC Neweywest bp; 
run; 
 

Parks model 
 
Proc Panel data=Ford2.retail_food; 
 id retailer date; 

model log_units = log_p log_disc log_disp log_ad /Parks Phi rho HAC Neweywest; 
run; 
 

Da Silva model 
 
Proc Panel data=Ford2.retail_food; 
 id retailer date; 

model log_units = log_p log_disc log_disp log_ad /Dasilva m=4 HAC Neweywest; 
run; 

 
 
The empirical results associated with the use of PROC PANEL for these respective models are 
exhibited in Tables 1-5. For all five models, the estimated coefficients conform the anticipated 
signs of the coefficients.  
 
In Table 1, the results for the pooled (OLS) model are presented. In Table 2, the results for the 
one-way fixed-effects models are listed. The CS1, CS2, CS3, and CS4 variables correspond to 
dummy variables for retailer 1, retailer 2, retailer 3, and retailer 4 respectively (the cross-sectional 
fixed effects.) The base or reference category is retailer 5. The reference category is arbitrary, but 
the reference category corresponds to the last cross-section specified in the sorting procedure. With 
the PROC PANEL procedure, for the one-way fixed effects model, the F-test associated with the 
null hypothesis of no fixed effects is calculated. In this example, this null hypothesis is rejected.4 
 

                                                 
4 The one-way fixed-effects model for cross-sections only requires N-1 dummy variables. The one-way fixed-effects 
model for time-series requires T-1 dummy variables. In this example N=5 and T=165. To cut down on the number 
of parameters to be estimated, only the one-way fixed effects model for cross-sections is discussed. 
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In Table 3, the results for the two-way random-effects model are presented. The Fuller-Battese 
method is chosen to estimate the variance components.5 Note that the variance component for 
cross-sections (𝜎𝜎𝑢𝑢2) dominates that variance component for time series (𝜎𝜎𝑣𝑣2). The variance of the 
error term is the sum of these three components, 0.1678. Based on the Hausman test for random 
effects, the null hypothesis of no correlation of the variance components with the set of explanatory 
factors is not rejected. Based on the Breusch-Pagan test, the null hypothesis of the absence of 
random effects is rejected. 
 
In Table 4, the results of the Parks Model are listed. Note that the first-order autoregressive 
parameter estimates are positive and noticeably larger than zero. As such, a positive serial 
correlation process of order 1 of the error term exists in each cross-section. On the basis of this 
result, the pooled model (Table 1) is not likely to be the appropriate specification. Based on the 
estimated phi matrix exhibited in Table 4, the diagonal elements, which correspond to the variance 
of the error terms in each cross-section, are different, ranging from 0.0654 to 0.1850. 
Consequently, evidence exists to support the contention of heteroscedasticity among the respective 
cross-sections. The off-diagonal elements of the phi matrix, which correspond to the covariances 
of the error terms of the respective cross-sections, are rather small, ranging from -0.0411 to 0.0335. 
On this basis, evidence exists to support the contention that the degree of correlation among cross-
sections is negligible.    
 
In Table 5, the results of the Da Silva Method are presented. The order of the moving-average 
(MA) process in the error terms chosen for this example is four. Twelve different orders of the 
MA process were considered, 1 through 12. The selection of order 4 stems from the minimization 
of the mean squared error (MSE) of the residuals. Similar to the two-way random-effects model 
previously discussed, the variance component for the cross-sections dominates the variance 
component for the weekly time series.  
 
A comparison of the estimated coefficients of the explanatory variables across all models is 
exhibited in Table 6. Note that the pooled model yields the lowest goodness-of-fit-measure (R2) at 
0.5426. In the other models, the R2 metrics range from 0.8728 to 0.9407. In addition, in the Da 
Silva model, none of the estimated coefficients is statistically different from zero despite a 
goodness-of-fit measure of 0.9040. Moreover, in the one-way fixed-effects model, the two-way 
random-effects model, and the Parks model, all estimated coefficients are statistically different 
from zero. Further, the one-way fixed effects model and the two-way random effects model yield 
very similar estimates of the respective coefficients. But notable differences are evident of the 
estimates of the own-price elasticity and the advertising elasticity in the Parks model (-1.6581 and 
0.4682) vis-à-vis the one-way fixed-effects model (-0.7899 and 0.2793) and the two-way random-
effects model (-0.8748 and 0.2869). In economic parlance on the basis of the Parks model, the 
demand for the food product is elastic, whereas on the basis of the one-way fixed-effects model 
and the two-way random effects the demand for the food product is inelastic. Finally, the impact 
from advertising is roughly 1.6 times higher on the basis of the Parks model relative to the impact 
from advertising on the basis of the one-way fixed-effects model and the two-way random-effects 
model. Bottom line, the selection of the appropriate specification is not only very important but 
also should not be made purely on statistical grounds. 
                                                 
5 The empirical results for the Wallace-Hussein method, the Wansbeek-Kapteyn method, and the Nerlove method 
were very similar to those obtained using the Fuller-Battese Method.  
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Table 1. The PANEL Procedure Pooled (OLS) Estimates 

Model Description 

Estimation Method Pooled 

Number of Cross Sections 5 

Time Series Length 165 

HAC Kernel Bartlett 

HAC Bandwidth Newey and West 

 
Fit Statistics 

SSE 495.9952 DFE 820 

MSE 0.6049 Root MSE 0.7777 

R-Square 0.5426     

 
Parameter Estimates 

Variable Estimate Standard Error t Value Pr > |t| 

Intercept 11.1471 0.3443 32.37 <.0001 

logp_1 -2.0666 0.3151 -6.56 <.0001 

logdisc 0.0466 0.4250 0.11 0.9128 

logdisp 3.6824 0.2599 14.17 <.0001 

logad 0.4137 0.1646 2.51 0.0121 
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Table 2. The PANEL Procedure Fixed One Way Estimates 

Model Description 

Estimation Method FixOne 

Number of Cross Sections 5 

Time Series Length 165 

HAC Kernel Bartlett 

HAC Bandwidth Newey and West 

 
Fit Statistics 

SSE 64.2781 DFE 816 

MSE 0.0788 Root MSE 0.2807 

R-Square 0.9407     

 
F Test for No Fixed Effects 

Num DF Den DF F Value Pr > F 

4 816 1370.14 <.0001 

 
Parameter Estimates 

Variable Estimate Standard Error t Value Pr > |t| 

CS1 0.9071 0.0485 18.70 <.0001 

CS2 0.9373 0.0752 12.46 <.0001 

CS3 0.9664 0.0358 26.99 <.0001 

CS4 -1.1998 0.0647 -18.54 <.0001 

Intercept 9.2257 0.4780 19.30 <.0001 

logp_1 -0.7899 0.4278 -1.85 0.0652 

logdisc 3.6074 0.1822 19.80 <.0001 

logdisp 1.8955 0.1219 15.55 <.0001 

logad 0.2793 0.0783 3.57 0.0004 
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Table 3. The PANEL Procedure Fuller and Battese Variance Components (RanTwo) 

Model Description 

Estimation Method RanTwo 

Number of Cross Sections 5 

Time Series Length 165 

HAC Kernel Bartlett 

HAC Bandwidth Newey and West 

 
Fit Statistics 

SSE 60.2128 DFE 820 

MSE 0.0734 Root MSE 0.2710 

R-Square 0.8728     

 
Variance Component Estimates 

Variance Component for Cross Sections 0.8906 

Variance Component for Time Series 0.0054 

Variance Component for Error 0.0734 

 
Hausman Test for Random Effects 

DF m Value Pr > m 

4 4.60 0.3304 

 
Breusch Pagan Test for Random Effects (Two-Way) 

DF m Value Pr > m 

2 35242.4 <.0001 

 
Parameter Estimates 

Variable Estimate Standard Error t Value Pr > |t| 

Intercept 9.6509 0.7364 13.11 <.0001 

logp_1 -0.8748 0.4110 -2.13 0.0336 

logdisc 3.5611 0.1793 19.86 <.0001 

logdisp 1.9149 0.1223 15.65 <.0001 

logad 0.2869 0.0778 3.69 0.0002 
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Table 4. The PANEL Procedure Parks Method Estimation 

Model Description 

Estimation Method Parks 

Number of Cross Sections 5 

Time Series Length 165 

HAC Kernel Bartlett 

HAC Bandwidth Newey and West 
 

 

Fit Statistics 

SSE 783.4189 DFE 820 R-Square 0.9142 

MSE 0.9554 Root MSE 0.9774   
 
 

Parameter Estimates 

Variable Estimate Standard Error t Value Pr > |t| 

Intercept 10.7135 0.6425 16.68 <.0001 

logp -1.6581 0.6211 -2.67 0.0077 

logdisc 3.2539 0.0605 53.78 <.0001 

logdisp 1.7622 0.0373 47.25 <.0001 

logad 0.4682 0.0152 30.90 <.0001 
 

 

First Order Autoregressive Parameter Estimates 

RETAILER Rho 

1 0.6392 

2 0.9259 

3 0.6616 

4 0.9231 

5 0.5199 
 

 

Estimated Phi Matrix 

  1  2  3  4  5  

1 0.0735 0.0030 0.0335 -.0060 -.0044 

2 0.0030 0.0654 0.0213 -.0107 -.0292 

3 0.0335 0.0213 0.0945 -.0268 -.0411 

4 -.0060 -.0107 -.0268 0.0824 0.0124 

5 -.0044 -.0292 -.0411 0.0124 0.1850 
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Table 5. The PANEL Procedure Da Silva Method Estimation 

 
Model Description 

Estimation Method DaSilva 

Number of Cross Sections 5 

Time Series Length 165 

Order of MA Error Process 4 

HAC Kernel Bartlett 

HAC Bandwidth Newey and West 
 

Fit Statistics 

SSE 738.2562 DFE 820 

MSE 0.9003 Root MSE 0.9488 

R-Square 0.9040     
 

Variance Component Estimates 

Variance Component for Cross Sections 0.8583 

Variance Component for Time Series 0.0197 

 
Estimates of Autocovariances 

Lag Gamma 

0 0.1019 

1 0.0535 

2 0.0233 

3 0.0167 

4 0.0105 
 

Parameter Estimates 

Variable Estimate Standard Error t Value Pr > |t| 

Intercept 9.1526 234.1 0.04 0.9688 

logp_1 -0.4691 118.9 -0.00 0.9969 

logdisc 3.4655 3.9757 0.87 0.3836 

logdisp 1.9344 1.5614 1.24 0.2157 

logad 0.3958 0.9797 0.40 0.6863 
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Table 6. A Comparison of the Estimated Coefficients in the Explanatory Variables in the 
Example with the Use of PROC PANEL 

Variable Pooled One-Way 
Fixed Effects 

Two-Way 
Random 
Effects 

Parks Da Silva 
(m=4) 

Intercept 11.1472* 9.2257* 9.6509* 10.7135* 9.1526 
log -2.0666* -0.7899* -0.8748* -1.6581* -0.4691 
logdisc 0.0466 3.6073* 3.5611* 3.2539* 3.4655 
logdisp 3.6824* 1.8955* 1.9149* 1.7622* 1.9344 
logad 0.4137* 0.2793* 0.2869* 0.4682* 0.3958 
R2 0.5426 0.9407 0.8728 0.9412 0.9040 

 
*Significant at the 0.05 level.  
Source: Compiled by the author. 
 
 
Section VIII. Seemingly Unrelated Regression Model  
 
We now focus on the consideration of separate regressions for each cross-section and/or time series 
unit characterized by separate equations. Known as the seemingly unrelated regression (Zellner, 
1962), this specification (SUR) works only with balanced data. With the use of the SUR procedure, 
each equation is initially estimated by OLS. The correlation of the error terms then is taken into 
account in the second step of this procedure. As such, the SUR procedure is a joint generalized 
least squares estimation technique. In the ensuing discussion, we assume the estimation of N 
separate regressions, one for each cross-sectional unit. With the estimation of the N separate 
regressions, we obtain parameter estimates that vary across common explanatory variables, unlike 
the previously discussed single-equation models associated with the pooling of time-series and 
cross-sectional data.  
 
With the SUR model, we allow for the presence of contemporaneous correlation across the N error 
terms. In addition, we may also allow for the presence of autoregressive processes in each equation 
(Kmenta and Gilbert, 1968). Importantly, this technique allows the coefficients associated with 
common explanatory variables to vary by cross-sectional unit. As well, joint F-tests can be used 
in conjunction with each of the k explanatory variables to examine whether the impacts of changes 
in any explanatory variable vary significantly by cross-sectional entity. 
 
We use all NT observations in this process, so we preserve the pooled sample. Also, this technique 
improves the statistical efficiency of the parameter estimates. On an equation-by-equation basis, 
the standard errors of the estimated coefficients in the SUR model are lower (or minimally the 
same) in comparison to those obtained through the use of OLS. We may use either PROC SYSLIN 
or PROC MODEL to estimate SUR models. As well, we may use joint F-tests to determine whether 
or not coefficients of the explanatory variables vary significantly across cross-sectional units. The 
only visible downside to the estimation of SUR models is the size of N, the number of equations 
or cross-sections in the system. Even with a sizeable number of cross-sectional units, this potential 
limitation is not much of a constraint.     
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Section IX. Sample Problem of the Use of Seemingly Unrelated Regression 
 
The SAS program for this example of the use of seemingly unrelated regression (SUR) is as 
follows: 
 
data all; merge ret1 ret2 ret3 ret4 ret5; by week; 
proc model data=all;  
ret1_logunits=a0+a1*ret1_logprice+a2*ret1_logdisc+a4*ret1_logdisp+a5*ret1_logad; 
ret2_logunits=b0+b1*ret2_logprice+b2*ret2_logdisc+b4*ret2_logdisp+b5*ret2_logad; 
ret3_logunits=c0+c1*ret3_logprice+c2*ret3_logdisc+c4*ret3_logdisp+c5*ret3_logad;  
ret4_logunits=d0+d1*ret4_logprice+d2*ret4_logdisc+d4*ret4_logdisp+d5*ret4_logad; 
ret5_logunits=e0+e1*ret5_logprice+e2*ret5_logdisc+e4*ret5_logdisp+e5*ret5_logad;  
%ar(ret1_logunits,1); 
%ar(ret2_logunits,1); 
%ar(ret3_logunits,1); 
%ar(ret4_logunits,1); 
%ar(ret5_logunits,1); 
fit ret1_logunits ret2_logunits ret3_logunits ret4_logunits ret5_logunits / sur dw dwprob 
out=retailersur;  
parms a0 a1 a2 a4 a5 b0 b1 b2 b4 b5 c0 c1 c2 c4 c5 d0 d1 d2 d4 d5 e0 e1 e2 e4 e5; 
test a1-b1=0; test a1-c1=0; test a1-d1=0; test a1-e1=0; test b1-c1=0; test b1-d1=0; 
test b1-e1=0; test c1-d1=0; test c1-e1=0; test d1-e1=0;  
run; 

 
 
Each of the data sets for respective cross-sections (ret1 through ret5) consist of 165 weekly time 
periods. These five data sets subsequently are merged by week. Five separate equations embody 
the SUR framework. The macro %ar allows for a first-order autoregressive process of the error 
terms in each of the respective equations. With the fit command, we estimate the coefficients of 
the explanatory variables in the five-equation system with the SUR procedure, and we obtain the 
Durbin-Watson (dw) test statistics along with their associated p-values (dwprob). In this example, 
we also demonstrate the use of statistical tests associated with the own-price elasticities of the food 
product for the five different retailers. The null hypothesis is that the respective own-price 
elasticities are the same across retailers. In this example, with five retailers, there are ten tests of 
hypotheses with respect to the own-price elasticity of the food product.    
 
The summary of the goodness-of-fit statistics and the statistics associated with autocorrelation in 
the error terms are exhibited in Table 7. The R2 and adjusted R2 metrics range suggest that the 
model explains a notable amount of variability in the volume of units sold for this food product 
for each of the respective retailers. These statistics range from roughly 74% to 96%. Based on the 
estimated coefficients of the %ar macro, a first-order autoregressive process is evident in the error 
terms of each of the respective five equations. Each of these estimated coefficients is positive 
(indicative of positive serial correlation of the residuals) and significantly different from zero at 
the 0.05 level. The Durbin-Watson statistics indicate that the correction for the first-order 
autoregressive process leads to white noise (the absence of any systematic pattern) in the error 
terms in each of the five equations.   
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Table 7.  Summary of Goodness-of-Fit Statistics and Statistics Associated with 
Autocorrelation from the PROC MODEL Procedure (SUR) 

Equation R2 Adjusted 
R2 

Coefficient Associated 
with First-Order 

Autoregression Process 
Durbin-Watson 

Retailer 1 0.7429 0.7346 0.5771* 1.9790 

Retailer 2 0.9490 0.9474 0.3995* 2.0402 

Retailer 3 0.9613 0.9603 0.3637* 1.9291 

Retailer 4 0.8957 0.8923 0.3466* 2.0288 

Retailer 5 0.9305 0.9283 0.1664* 1.9286 
 
*Significantly different from zero at the 0.05 level.  
 
 
The estimated coefficients, standard errors, and p-values are summarized in Table 8. The own-
price elasticities of the food product are negative as hypothesized and significantly different from 
zero at the 0.05 level for retailers 2 and 4. The own-price elasticities of the food product are 
negative for retailers 3 and 5, but these coefficients are not statistically different from zero. The 
own-price elasticity of the food product for retailer 1 however is positive but this coefficient is not 
statistically different from zero. The elasticities associated with discounts are positive across all 
retailers as hypothesized, and these coefficients are significantly different from zero for retailers 
2, 3, 4, and 5. The elasticities associated with displays are positive and significantly different from 
zero across all five retailers as expected. Finally, the elasticities associated with advertising are all 
positive for the set of retailers as expected but significantly different from zero only for retailers 2 
and 3. 
 
The summary of the tests of hypotheses in regard to the equality of the own-price elasticities is 
exhibited in Table 9. The test statistic (a Wald test) follows a chi-squared distribution with one 
degree-of-freedom. In three of the ten pairwise tests, the equality of the own-price elasticities is 
rejected the 0.05 level of significance. This situation occurs for retailer 1 versus retailer 2, retailer 
1 versus retailer 3, and retailer 4 versus retailer 5. 
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Table 8. Parameter Estimates, Standard Errors and p-Values Associated with the 
Coefficients in the SUR Model 

 
Retailer 1 Retailer 2 Retailer 3 Retailer 4 Retailer 5 

Intercept 
9.3516*a 12.0315* 13.6615* 11.2548* 8.7373* 
-0.5295b -1.1472 (3.9003) (1.0789) (0.7060) 

(0.0000)c (0.0000) (0.0006) (0.0000) (0.0000)       

logp 
0.0538 -2.0553* -3.6749 -3.1453* -0.4014 

(0.5457) (0.8128) (3.3099) (0.7916) (0.6335) 
(0.9217) (0.0125) (0.2682) (0.0001) (0.5272)       

logdisc 
0.7491 2.8040* 4.8289* 4.1428* 3.0511* 

(0.7733) (0.2153) (0.3406) (0.1901) (0.3774) 
(0.3342) (0.0000) (0.0000) (0.000) (0.0000)       

logdisp 
2.1758* 0.8750* 1.0891* 1.0681* 3.2028* 
(0.1636) (0.2119) (0.1310) (0.1463) (0.2259) 
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)       

logad 
0.1231 1.2261* 0.2394* 0.1366 0.1266 

(0.0783) (0.0971) (0.1047) (0.0831) (0.1056) 
(0.1182) (0.0000) (0.0236) (0.1023) (0.2327) 

a Parameter Estimate 
b Estimates of Standard Error 
c p-Value 
* Significant at the 0.05 level.  
 
 
Table 9. Summary of the Tests of Hypotheses in Regard to the Equality of the Own-Price 
Elasticities of the Food Product across the Respective Retailers in the SUR Model 

Null Hypothesis (Ho*) Test 
Statistic a p-value b Decision 

Elasticity for Retailer 1 = Elasticity for Retailer 2 4.64 0.0312 Reject Ho 
Elasticity for Retailer 1 = Elasticity for Retailer 3 1.29 0.2568 Fail to reject Ho 
Elasticity for Retailer 1 = Elasticity for Retailer 4 11.29 0.0008 Reject Ho 
Elasticity for Retailer 1 = Elasticity for Retailer 5 0.26 0.6102 Fail to reject Ho 
Elasticity for Retailer 2 = Elasticity for Retailer 3 0.22 0.6359 Fail to reject Ho 
Elasticity for Retailer 2 = Elasticity for Retailer 4 0.93 0.3339 Fail to reject Ho 
Elasticity for Retailer 2 = Elasticity for Retailer 5 2.60 0.1071 Fail to reject Ho 
Elasticity for Retailer 3 = Elasticity for Retailer 4 0.02 0.8764 Fail to reject Ho 
Elasticity for Retailer 3 = Elasticity for Retailer 5 0.91 0.3404 Fail to reject Ho 
Elasticity for Retailer 4 = Elasticity for Retailer 5 7.42 0.0064 Reject Ho 

Bold indicates significance at the 0.05 level.  
a Test statistic is a Wald statistic. 
b Test statistic follows an x2 distribution with degree of freedom. 
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Section X. Concluding Remarks 
 
• In applied econometrics, practitioners have access to data not only over time but also by cross-

section. This type of data set often is referred to as pooled data. 

• The key question in dealing with panel data is whether analysts can we live with common 
pooled estimates of the coefficients of the explanatory variables. If the answer to this question 
is yes, then single-equation models are the way to proceed with the use of PROC PANEL. If 
the answer to this question is no, then we can run separate regressions by cross-sectional unit, 
a seemingly unrelated regression (SUR) model, provided sufficient observations exist to not 
only estimate parameters of the model but also to conduct statistical tests of hypotheses. In this 
case, PROC SYSLIN or PROC MODEL are the appropriate SAS procedures. 

• PROC PANEL is the appropriate SAS procedure to handle the estimation of the Parks model, 
the error components model (or random effects model), the Da Silva, and the ANACOVA or 
LSDV model (or fixed effects model).  

• When dealing with pooled data sets with balanced designs, analysts may use the Parks model 
and the Da Silva model.  

• When dealing with pooled data sets with unbalanced designs, analysts may use the error 
components model as well as the analysis of covariance (ANACOVA) or least squares with 
dummy variables (LSDV) models. 

• Analysts should use the Hausman test in random-effects models to determine if the error 
components are correlated with the set of explanatory variables.  

• Analysts should use the Breusch-Pagan test in random-effects models to determine if random 
effects are present.  

• In the estimation of random-effects models, options include the Fuller-Battese method, the 
Wansbeck-Kapteyn method, the Wallace-Hussein method, and the Nerlove method. No 
obvious advantages are evident in conjunction with these estimation methods. 

• For balanced designs, the SUR model enables the estimation of separate regressions for each 
cross-section. Joint F-tests can be used in conjunction with each of the explanatory variables 
to examine whether the impacts of changes in any explanatory variable vary significantly by 
cross-sectional entity. 
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